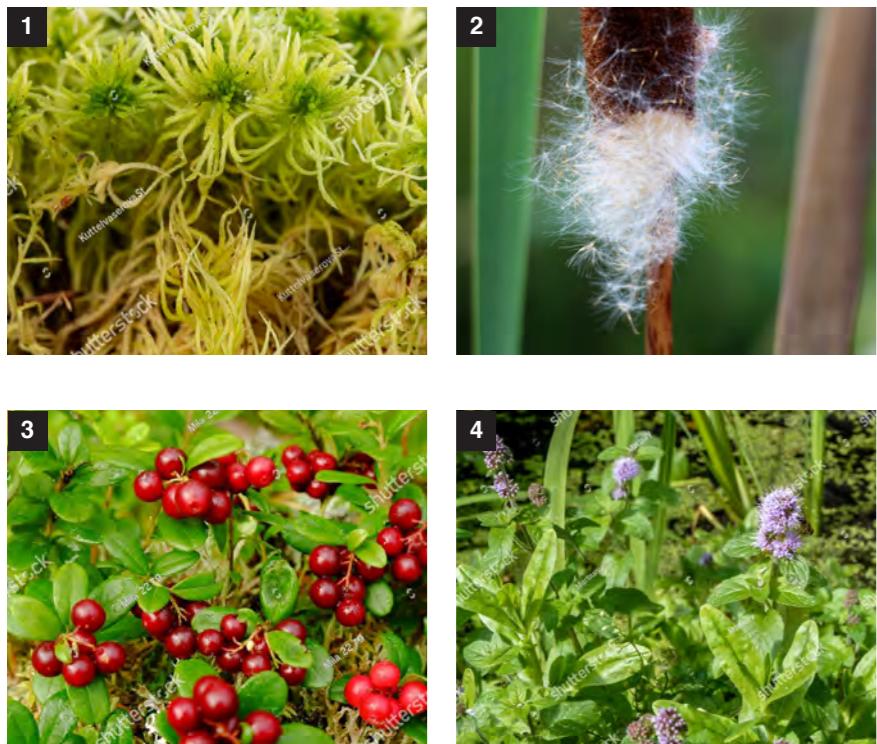


Paludiculture

DEFINING PALUDICULTURE | WHAT TO GROW | SITE PREPARATION

72%


Sphagnum moss and the use of *T. latifolia* for fibre are the highest-scoring champion crops at 72% of the points on offer

£1.3k

The reported rate of approximate return per hectare for BeadaMoss

Know the market: champion crops

We look at the practical and economical opportunities for growing different crops in wetland conditions with an emphasis on sustainable land use and reducing carbon emissions

Champion crops

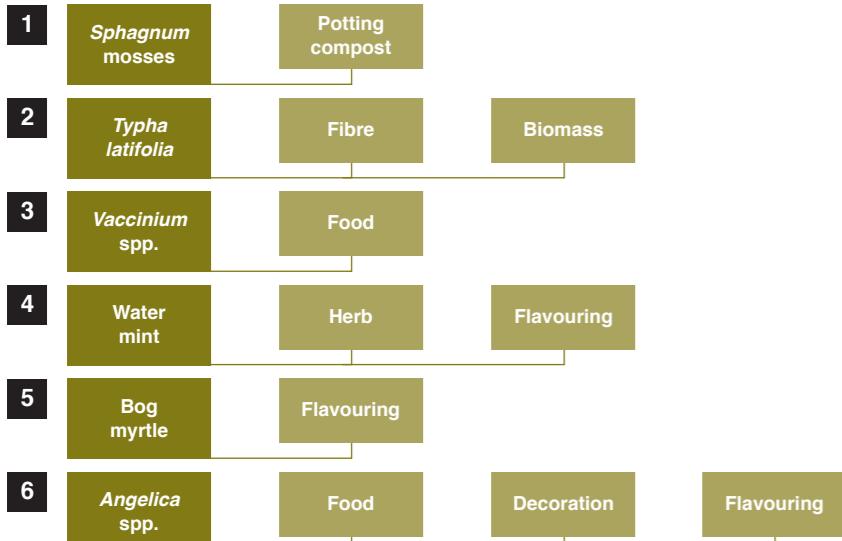


figure 2

Source Savills Rural Research

Paludiculture crops have vastly different requirements compared to conventional arable crops. The final selection of champion crops was made using 15 parameters

optimise carbon capture, the wetting of peat needs to be within 10 cm of the soil surface but not above, in order to minimise methane release. This presents challenges and requires further investigation. A route to market would be through Ponda (BioPuff®), who produce fibre for clothing from the down (seed heads). Biochar could be created from the biomass to capture carbon for the long term.

3 Novel crops
Myrica gale, *Mentha aquatica* and *Angelica* spp. could offer Holker Farms an opportunity to create a novel product with estate branding. Further research and on-site trials would be required. It would require active entrepreneurial input from Holker Farms and an industry advocate to support the development and marketing of the niche crop, such as that already established for *Sphagnum* moss and *T. latifolia*.

Vaccinium spp.
The *Vaccinium* spp. offer a food crop opportunity. *V. oxyccos* (cranberry, marsh cranberry, small cranberry) have established commercial markets and Holker Farms is unlikely to compete with the existing producers. However, there is a European cranberry found in the neighbouring SSSI that is said to have distinct properties, which could be promoted to create a unique market position. Additionally, *V. oxyccos* could be intercropped with *Sphagnum* moss.

1 Site of Special Scientific Interest

figure 3

Source Savills Rural Research

15

Number of parameters used to assess which crops had the most potential for paludiculture at Holker Farms

● The ability to grow a plant is not a determinant of whether it is a commercial option, although growth alone may be sufficient to secure environmental targets ● Simon Ward, independent consultant

Know the site: paludiculture in action

Case studies provide the opportunity to look at lessons learned and thoughts for the future. Here Savills provides a summary of its research visits to a number of peatland sites

CARBON FARMING AT BIRCH HOUSE

This site targeted the propagation of *Sphagnum* moss for carbon capture, regeneration and sustainability of peatland, rather than the ongoing output of a commercial product. Nonetheless, lessons in the cultivation of *Sphagnum* moss and site preparation can still be learned.

Site preparation at Birch House was intensive, incurring a significant carbon and economic cost to remove historic nutrients from the area and enable *Sphagnum* propagation. This intense method of nutrient control may not be the only option for nutrient mitigation, depending on the site and less carbon- and cost-intensive measures should be considered.

HYDROLOGY AT MANOR FARM

The site at Manor Farm reaffirms the need for good site preparation, which includes both soil and water operational considerations. The establishment of *T. latifolia* is being explored using a drone, though the most effective method has yet to be confirmed.

Transplantation from another site is being considered, which would be available to Holker Farms with the neighbouring SSSI. Manor Farm is working with Ponda for the commercial output.

CONVENTIONAL CROPS AT RINDLE FIELD
The crops grown here (pictured above) were a mix of food crops including celery, blueberries and market garden crops. The main lesson learned is that any paludiculture site needs to have a management programme in place whether the site is

restorative or commercial. Three years into this trial and no harvest has taken place due to agronomic challenges such as nutrition and weed control. Interestingly, supermarkets that were contacted were willing to buy the produce from this site. If output can be achieved, this could be a viable opportunity. This site visit confirmed that commercial markets are still in their infancy and need further development.

HARPER ADAMS

The Paludiculture Symposium at Harper Adams demonstrated a range of research focusing on the relationship between greenhouse gas emissions and nutrients and the dynamics of water in paludiculture farming systems. A separate event investigated the utility of technology in achieving paludiculture, including:

- Using drones to plant crops.
- Various tyre and track technologies to enhance access to sites.
- Specialised machinery, such as amphibious harvesters, to facilitate productivity.

6-10

Number of years before *T. latifolia* needs replanting

0-50

Rindle Field is experimenting with water levels from ground level to 50 cm below ground to find the optimum for growing conventional crops

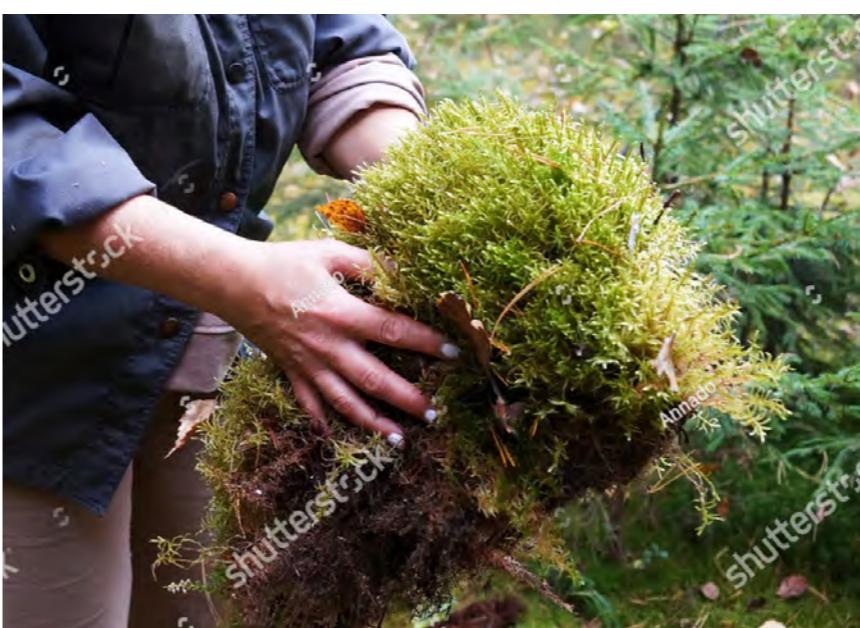
Know the numbers: industry advocates

For the gold and silver medal position of champion crops, *Sphagnum* moss and *T. latifolia*, the two industry advocates are BeadaMoss and Ponda

BEADAMOSS

BeadaMoss undertakes *Sphagnum* farming primarily as a means of peatland restoration, providing restoration projects with micro propagated *Sphagnum* moss. Additionally, BeadaMoss are presently researching the use of *Sphagnum* mosses as a sustainable peat alternative and a feedstock for carbon farming.

Sphagnum grown by BeadaMoss is currently cultivated within a nursery facility with the aid of solar photovoltaics, ground source heat pumps and heat recirculation. Trials are underway to optimise growth with fewer controls exerted over the crop. Potential growers should be aware of local conditions, particularly those near protected sites where the introduction of non-native mosses may cause environmental issues between neighbouring sites.


PONDA

Ponda can provide contracts to grow *T. latifolia*. They will provide advice on the growing requirements such as planting density, optimal harvesting approaches and nutrient requirements. The first

harvest is in year three, therefore the financial viability of the crop needs to take this into account.

Harvest takes place from August and the advice is to leave the biomass to improve future harvest years – replanting would be in 6-10 years.

Hydrology is the essential thing to know and control. Deer can be a pest and phragmites can invade and compete. Innovation continues with *T. latifolia* and Ponda are researching future machinery requirements.

PREPARING FOR PALUDICULTURE

We combine three main areas for those looking at paludiculture for the future:

1 Undertake full testing of the soil and water for nutrients and pH. The soil texture also needs to be assessed. Sampling may need to be intensive for crops requiring a particularly low pH.

While the location at Holker Farms is suited to the champion crops selected, the arable land may have excessive nutrient levels and too high a pH to be capable of a high yield without remediation. This was a lesson learned from the site visits undertaken (see opposite). At the Birch House trial site, the topsoil needed to be stripped before establishment of *Sphagnum* moss due to excess nutrient levels. For other crops, such as celery, higher nutrient concentrations are desirable for optimal yield and so crop choice could be amended accordingly.

2 The consistency of water supply needs to be investigated, including control and resilience in times of excessive or deficient supply and any implications for third parties of controlling the water and statutory conditions. Crop choice is once again critical as certain crops, such as celery, cannot tolerate falls in the water table as well as *Sphagnum* mosses.

If these aspects are satisfactory for Holker Farms, the cost of site preparation, including controlling the water table and levelling of the site, needs to be reviewed by water engineers. It is recommended that the aesthetic and environmental implications beyond the farm are discussed with interested parties.

3 For Holker Farms, the proximity to the SSSI might risk the introduction of alien genetic material even if it is from the same species. While there is unlikely to be a legal barrier to the introduction, it might be considered insensitive given the environmental significance. An opportunity is that the paludiculture site could provide a visitor point on several nearby trails and improve knowledge and awareness of paludiculture and the role it can play in reducing carbon emissions and provide a commercial output for businesses.

A member of
Holker Group

Savills
Rural Knowledge Portal

Holker Farms

Natural England
Paludiculture Exploration Fund

